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ABSTRACT
The applicability of known stochastic programming models and
methods for the solution of problems in classical statistics and
probability is shown by a number of examples. These concern testing
of hypotheses, constructing of tolerance regions, planning of optimal

sampling and the Moran model for the dam.

AMS (MOS) Subject Classifications: 90C15, 90C25, 62D05, 62H15, 60A99

Key Words: Chance constrained programming, Statistical decision,
Testing hypotheses, Dam problem

Work Unit Number 5 (Mathematical Programming.and Operations Research)

éponsored by the United States Army under Contract No. DAAG29-75-C-0024.

197

AR b




SIGNIFICANCE AND EXPLANATION

Mathematical programming deals with optimization under constraints, e.g.
minimization of costs in manufacturing operations when sources of supply,
machines and manpower are limited. Stochastic programming deals with
mathematical programming problems in which there is uncertainty associated
with the variables and with the constraints in the optimization problem. Thus
stochastic programming lies on the borderline between mathematical programming
and statistics. However, the connection between the development of these two
sciences is not strong enough.

The purpose of this paper is to show how some stochastic programming
methods (developed by the author) can be applied in classical problems of
statistics. Models are formulated for a) construction of statistical
tests, b) construction of tolerance regions, c¢) optimum allocation in
surveys, d) the dam problem of MORAN. The solution of the above problems
uses nonlinear programming combined with simulation. Evidence concerning

effective solvability of such problems is given in other referenced papers.
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THE USE OF STOCHASTIC PROGRAMMING FOR THE SOLUTION OF SOME PROBLEMS
IN STATISTICS AND PROBABILITY

Andras Prékopa

1. Introduction

Stochastic programming is a branch of mathematical programming because it
deals with handling of mathematical programming problems where some of the
parameters are random variables. At the same time we may consider it to be
part or extension of statistics [4] because problems concerning optimization
of stochastic systems in general can be considered to belong to statistics
in the wide sense. We say in the "wide sense" because in many textbooks
on statistics the definition of this science includes the possibility of
gaining information by experimentation to an extent depending on the
statistician (see e.g. the Introduction of [14]). It is, however, not always
the case concerning the stochastic systems stochastic programming deals
with. If e.g. we formulate reservoir system design models using past
hydrological data then it is not possible to perform further experimentation
unless we postpone the date of the building of the reservoirs. Some
statisticians do not require that the possibility of getting information
by further experimentation should be characteristic for the statistical
methods. Accepting this, it is in fact appropriate to say that stochastic
programming is an "extension of statistics".

For about twenty years, however, stochastic programming has bhad a
development almost independent of the parallel development of the statistical
methods. Hence it is reasonable to show that some of the stochastic
programming models and methods provide useful tools for the solution of
known problems in classical statistics and probability. The purpose of
this paper is to show this possibility by a number of examples. ;

The possibility of applying stochastic programming in statistics and

probability is easy to understand. In fact the decision principles of

Sponsored by the United States Army under Contract No. DAAG29-75~C-0024.
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stochastic programming contain ideas taken from classical statistical theories.
Prescribing lower or upper bound for probabilities and find optimal strategy
is a general way of thinking in testing hypothesis. To decide, then observe
and to decide again, appears to be the general decision scheme in the deci-
sion theory of Wald and others. To find optimal strategy by minimizing an
expectation depending on some decision variable(s) already appears in the
work of D. Bernoulli concerning the solution of the Petersburg problem [16].
However, the fact that similar principles can be applied and how they can be
applied for large scale problems described by mathematical programming
problems where some of the parameters are random, was by no means simple

to discover. Because not only the formal application of the statistical
principles was necessary to carry out but the new problems turning out

needed to be numerically solvable mathematical programming problems and these
must have resulted in good applications.

The problems we formulate in this paper are of "chance constrained" or
in other words "probabilistic constrained" type. This type of stochastic
programming model has been introduced by Charnes, Cooper and Symonds [3)
(the paper was presented at the Econometric Society meeting in Washington,
D.C., 1953). 1In our models, however, we frequently impose constraint on
the joint probability for the occurrence of random events which is important
in particular in applications in statistics and probability from the point
of view of model construction. At the same time this makes the numerical
solution of the problem more complicated.

Since extensive application has been done by the author and his
collaborators concerning such stochastic programming problems, evidence
exists that problems of the type we are going to formulate are numerically

solvable at least in moderate sizes.
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The problems we are going to formulate are of the following type

({0 5 1 s minimize f(x) subject to

v

ho(x) = P(gl(x.i) 0,--.,gr(x,£) 2:0) =,

hi(X) > 0, M e e

where x € Rn, Gye+-<29,  are functions of the deterministic variable x and

the random variable & further h ..,hm are functions of the deterministic

1
variable x. Problems of the type (1.1) are solved by the combined use of
nonlinear programming and simulation where the latter is used to determine
function values which are probabilities and gradient values which can be

expressed in terms of probabilities concerning h and these probabilities

0
belong to sets in higher dimensional spaces.

If Problem 1 is a convex programming problem i.e. the set of feasible solu-
tions is convex and f(x) is a convex function, then when solving the problem we
can reach global optimum, otherwise we canonly expect local optimum. To have a convex
programming problem it is crucial to know that the constraint ho(x) i
determines a convex set. General theorems ensure this property. For the
reader's convenience we formulate here two theorems proved in [9], [10] and
[1], [2], respectively. For further references see [13].

Theorem 1. If gl,...,gr are concave functions in all variables in the
entire space and £ has a logarithmically concavel probability density
function, then ho is a logarithmically concave function in the entire space

of the variable x.

1A nonnegative point function h defined on a convex set A is said to be
logarithmically concave (logconcave) if for every x, y € A and 0 < X < 1,

A -A
we have h(ix + (1-))y) > [h(x)] [h(y)ll .

B
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Theorem 2. If € Rn, E Rq and gl,..-,gr are concave functions in

n+q

-1/n

has the property that f is convex in

. : n
function in R .

, further the probability density function f of the random vector ¢

Rq, then h0 is a quasi-concave2

In some of the problems formulated in this paper we shall allow more

than one probabilistic constraints.

2 ;
A function
for every

h defined on a convex set A

is said to be quasi-concave if

x,y € A and 0 < X <1, we have f(Ax + (1-))y) > min[f(x),f(y)].




2. Testing Statistical Hypothesis and Construction

of Confidence Region

The simplest example that can be formulated to illustrate testing
hypothesis is to test the probability distribution PO against the alterna-

tive Pl. For the sake of simplicity we assume that these are discrete
distributions assigning positive probabilities only to positive integers
and Po(k), Pl(k) respectively, designate the probabilities belonging to
the integer k. To construct a test of size less than or equal to the

prescribed probability o and having maximum power is equivalent to finding

a set of integers 'S such that

first kind error = Z P (k) < a
0
ké S
(2.1)
power of the test = Z P_ (k) - max .
ke S L

This problem can be formulated as a mathematical programming problem

maximize X Pl(k)xk

k€ S
2. 2) subject to z P (kix, <& ;
0 k =
ke S
%X. =0 or )L all k .

The optimal set S is then given by

S = {klxk =1} .

Problem (2.2) is known in the operations research as the knapsack problem and
has a simple solution mentioned already in [7, p. 64]. We have mentioned the
above problem only in order to present a starting point for the formulation
of more sophisticated tests. We introduce the following notations

H: Set of probability distributions representing a hypothesis.

K: Set of probability distributions representing the alternative.




X: Vector valued random variable. On the basis of the observed
value of X we reject or accept the hypothesis.
a: Prescribed upper bound for the first kind errors.
B: Variable to be maximized, its optimum value is the maximum
value of the minimum power of the test.
S: Critical region.
The problem is to find S by solving the following problem
maximize B subject to
P(X € S|F) < o for every F € H

(2.3) %
P(X € S|F)

v

B for every F € K .
In (2.3) on the left hand sides there stand probabilities of the event X € S
using the probability distribution F for the random vector x.
Problem (2.3) is too general. We can hardly find a set S this way.
We can, however, restrict the type of the set S and find one in the

restricted category. To this end let us introduce the sets

n
|

= {x|Lk(x) > bk}, k'S 1, < oqm
m

S—IE;Jlsk.
where Ll,...,Lk are given linear forms of the variable x € R" and
bl""'bm are real parameters the values of which we want to determine by
an optimization problem. The closure of the complementary of S is a convex
polyhedron for every fixed values of the parameters bl,...,bm and through
the variation of the parameters only (some of) the faces are shifted (see
Fig. 1), % .2 assume that all probability distributions in H and K are

continuous. This implies that each of them assigns O probability to any

hyperplane. Knowing this, we can write




&

Figure 1

k23 imlty

A
L5 g

P(Xe S|F) =1 - P (L, (X) W’
for every F € H .
This is the probability in the first constraint of Problem (2.3). The

constraint itself can be written in the following manner:

(2.4) P(L (X) < b, k= l,...,m|F) >1 -a for Fe H .

If every F € H has a logconcave density or a density satisfying the




condition of Theorem 2, then the set of vectors (bl,...,bm) satisfying

(4) is a convex set. This is ensured by Theorem 1 and 2, whichever applies.
In most of the cases we cannot expect that the second constraint in

Problem (2.3) in this joint probabilistic constraint will determine a

convex set of the (bl,...,bm) vectors. Therefore instead of the single

second constraint we shall use constraints imposing lower bounds for the

single probabilities. These are the following

3 : > F) > £ = Joos ety d € -
(2.5) P(r, (X) 2b |F) > 8 for k=1 m and F € K
o
where Bl,...,Bm will also be handled as variables. Putting Bk =e 5
k=1,...,m we formulate our problem in the following manner
minimize (yl R ym) subject to
(2.6) P(L(X) <b,k=1,....mF) >1-a for FeH,
Yk

e "P(L (X) > ble) 1 for k=1l,...,M and Fe K,

Y. 2 00 k= 1;...,m .

k
If every probability distribution in H U K satisfies the condition of

Theorem 1 or Theorem 2, then (2.6) is a convex programming problem. Minimizing

instead of the sum of Yl""’Ym' the convex programming character of the
problem will not be disturbed.

Similar problem can be formulated for the construction of confidence
region. 1In this case we use the first constraint of Problem (2.6), impose some
other constraints on b ,...,bm (these can be e.g. lower and upper bounds)

1

and minimize a certain function of the variables bl,...,bm. Thus we are

lead to the following problem:




minimize f(b) subject to

A

(2.7) P(L (%) <b , k= 1,...,m|F) >1 -a for Fe H,

= k

h, (b)
i

v

0, i=1;c.0,M .

If every F in H satisfies the condition of Theorem 1 or Theorem 2, then
the first constraint determines a convex set of the b vectors. Then, if f

o0 are concave or guasi-concave, Problem (2.7) will

is convex and h_,...
con n 1; M

be a convex programming problem. The confidence region will be the inter-

section of the sets S ..,Sm using the optimal b ,...,bm produced by

s 1

Problem (2.7). The above notion of a confidence region is slightly different
from the conventional one. The reason is that we work with general sets of
probability distributions and disregard the parameter. It is not difficult,
however to specialize our problem formulation for the case when we have
parameter and to derive this way confidence region in the conventional sense

for the unknown parameter.




3. Construction of Tolerance Regions

Let F be the probability distribution of the random vector
X = (Xl,...,XN). The random set S 1is a B-ccntent tolerance region of
confidence level Yy if the following inequality holds

631} P(f dr 2 B>
“ =

The random set S is constructed on the basis of a sample taken from the
population F. The probability standing on the left hand side in (3.1) is
called the coverage of S.

Instead of a general formulation of the construction of a tolerance
region based on stochastic programming, we show the principal idea on a simple
problem.

(0,Kx)

Suppose we want to construct tolerance region of the form S
for an exponential distribution with unknown parameter A where X is the
empirical mean of a sample of size n taken from this population and K
is a number to be determined so that it should be the smallest number
satisfying (3.1) with given R and y. 1In our case (3.1) can be written
in the following manner

(3.2) P - ¢ 5 g

v

¢

Let us introduce the notation 5 = Ax. The probability distribution of ;
is independent of A and n§ has a standard gamma distribution with parameter

n i.e. n§ has the following probability density function:

Zn—le—z
= —— i >
f(z) o et R Sl
and f(z) = 0 otherwise. The inequality (3.2) can be rewritten as follows:
= n d
. e e | > .
(3.3) (ny > x V98 T B) =7
-10-




. p . 1 ’ 1
It will be more convenient to use the new variable L = i' Putting K = E

in (3.3), our problem will be to find the largest L satisfying (3.3).

Assume now that we have m independent exponentially distributed random
variables with parameters Al,...,km, respectively. Let ;l""';m denote
the sampling expectations corresponding to independent samples of sizes
niseeelm taken from these populations and §i = A;i' de =L ,m. Hor
the construction of a tolerance region of the form (X means Cartasian

product) :

T

(3.4) s = (0, I

= 1 — 1 -
xl) x (0, 0 x2) X =ie (@, T xm)
1 2 m

it is reasonable to choose the following decision principle

maximize (Ll S CIOH i Lm) subject to

~ 1
. > v
(3.5) | | P(n,y, > L.,n, log 7= B) =

v

v}

A
o

A
o

L= Aeee i g

where a a i b ,...,bm are prescribed bounds. Since a standard gamma

TR 1

density function with parameter greater than or equal to 1, 1is a logconcave
point function, it follows from Theorem 1 that the constraining function i.e.
the function standing on the left hand side of the first constraint of
Problem (3.5), is a logconcave function of the variables Ll""'Lm' Thus
(3.5) is a convex programming problem.

It is not necessary to restrict ourselves to the case of independent

random variables. Consider e.g. the random variables

1
w Jod S Tt
1
1
X, = X (z1 + z3) ’
2
=11=

e ’ a e e e



where Al,xz are positive (unknown) constants and zl,zz,z3 are standard

gamma distributed random variables with known parameters 01,92,03. If

we take three independent samples concerning 21’22'23' all of them of size
n and use the notations 21,22,23 for the sample means, further
;l = AEl, ;2 = AEZ, §3 = AE3, then we can formulate the following stochastic

programming problem

maximize (Ll + L2) subject to

1
1 =20
(3.6) P = %

v. +v.) >
n(yl y2) > nL log

— - 1
+ >
n(yl y3) 2 nL2 log 1-38

ARl B, i v B0

The random variables n§1,n§2,n§3 are independent and they have standard

gamma distributions with parameters n&l,nﬂz,n03. 15 n@l > 1, n02 > 1,

nd > 1, then n§l,n§

3 ,n§3 have a logconcave joint density. Hence by

2

Theorem 1, the constraining function in the first constraint of Problem (3.6)

is a logconcave function of the variables Ll'L2' Thus (3.6) is a convex

programming problem. The tolerance region will be that special case of
(3.4) where m = 2 and Ll,L2 are the components of an optimal solution

of Problem (3.6).

12«
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4. Optimum Allocation in Surveys

A well-known application of nonlinear programming is to find the number
of elements in the different strata concerning stratified sampling from a
finite population. First we formulate this problem that is a deterministic
one, then using it as an underlying deterministic problem, we formulate a
stochastic programming problem. Let us introduce the following notations:

L Number of strata

N Elements in stratum h

L
N = 2 N Total number of elements in the population

h=1 b
nh Unknown number of elements to be chosen from stratum h
1 1
X == ==,
byt
wh = Nh/N
§j Estimate of the jth variable
T Number of variables to be estimated
2 y : v :
Sh Variance of the jth wvariable in stratum h
J
2 ; ; =
Vj Variance of the estimate yj
22
ahJ = thhj
: ; 2
dj Prescribed numerical upper bound for Vj
Ch Unit price of sampling from stratum h .

It is well-known that the variance V? can be expressed in the follow-~

ing manner
o L ) RERSRENN, S

To find n ,...,n_, we formulate a nonlinear programming problem. In order

1’ i

-13=
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to have linear constraints, we prefer to use the variables X .,XL. Since

Rees

= ¥
nh S l/(xh + Nh) ’

our problem reads as follows

L
it 1 -
+ —
minimize Z Ch/(xh N ) subject to

h=1 h
L
Z a, . < d., j=1,...,%,
e B L
0 < X < ] —-l—, = 1o aul -
=i Nh

In this problem the constraints are linear and the objective function to be
minimized is convex. Hence (4.1) is a convex programming problem.

Assume now that within the strata we have such populations the variances
of which are random variables. Then we can impose a probabilistic constraint
on the first p constraints of Problem (4.1) and formulate the following

new problem

L
minimize z Ch(Xh 55 ﬁ;) subject to
h=1 h
L
p(hzl ¥, Sd 3=l 2p
(4.2)
0 s X s 1=+ gL-, h=1y.copl .
= N & N.

h
We may take a small sample before and use the aposteriori distribution
of the coefficients aij given the result of the small sample. In this
case the structure of the problem (4.2) remains but we have new probability
distribution for the random variables in the first constraint.
Problems of the type (4.2) are frequently nonconvex. Here the

coefficients of the unknowns are random in the probabilistic constraint.

-14=




Some result concerning programming under probabilistic constraint with
random technology matrix are presented in (5], [11]. According to these

results still in many cases (4.2) will be a convex programming problem.

~]15~




5. An Example Concerning Stochastic Processes

We consider the Moran model for the dam [8] and see how stochastic
programming can improve this model.

Time will be subdivided into discrete periods and we number them by
1,2,... . Let K be the capacity of the dam. Assume that in the
beginning of Period i an input occurs: out of a total input X, that
amount for which we have freeboard, fiils up the reservoir to that extent
and the remaining water overflows. After this, an output (release) occurs.
We release an amount equal to M if at least that amount is available and
we release the total amount from the dam if the available @mount is smaller
than M. Let z; denote the water content of the reservoir at the end of
Period i. The following recursive relation holds true

(510 z. = max[min(z, + x.,K) - M,0], Bl LoD e
p b S -

1
where ZO is the initial water content of the reservoir. All demands will
be met in the course of the first n periods if and only if the following

relations hold:

(5.2) z, = min(z, + x,,K) -M>0, d = L,ocup &
i i- i

1

If xl,xz,... are independent, identically distributed random variables,

then zl,z ,-+. form a Markov chain. Under mild conditions we have ergodicity

2

[8] and using the stationary limit distribution, .a reservoir capacity design
principle can be formulated so that we put

(5.3) P(min(zi_l +x,,K 2 M) =P,

where p 1is a prescribed high probability.

We now drop the condition imposed on the random variables xl,xz,...

and assume only that concerning a finite subsequence xl,...,xn, the

-16-




condition of Theorem 1 or Theorem 2 is fulfilled. We also drop the condition
that the amount of water to be released is constant and does not depend on
the period. Moreover, we shall introduce the water quantities Ml,...,Mn

to be released in the subsequent periods as unknowns. In order to obtain

the recursive relations for this case we only have to write Mi instead

of M in (5.1). Writing Mi instead of M 1in (5.2) we obtain a necessary

and sufficient condition that all demands can be met in the course of the n

periods.
For the determination of the capacity K and Ml,...,Mn we formulate
the following stochastic programming problem:
minimize[c(K) - ¢, M, - - = c M ] subject to
11X nn

(5.4) P(min(zi__1 + xi,K) - Mi 20, 4 =13¢.c..0) > P,

0 <K <K

= =0
0 < Mi £ MiO' S TR DTRREE T

where p 1is a prescribed high probability, K ,Mi i=1,...,n are given

0'io’

constants, c¢(K) 1is the building cost of the reservoir and cl,...,cn
are the benefits of water units in the subsequent periods. We can e.g.
assume that winter moisture fills up completely the reservoir thus Periods
l,...,n are some few months in the spring, summer and fall. If the reservoir
serves for 50 years, say, then the building cost.should be subdivided into
50 equal parts in a discounted form and use only the first year part as
c(K) to have a right economic formulation of the problem. This is, however,
not a central point of our present discussion.

Problem (5.4) is a convex programming problem if c(K) is a convex
function and the joint distribution of x ,...,xn satisfies the condition

1

of Theorem 1 or Theorem 2.

e




For further reservoir system design models based on stochastic

programming the reader is referred to [10], [12].
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